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Abstract

We set the context for this special issue on modern goodness of fit methods, or modern methods of

assessing statistical models.
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In itself goodness of fit has an old-fashioned connotation, in part no doubt because the

discipline of statistics could be argued to date from the classic Pearson (1900) paper. To

avoid that label, perhaps those of us with this interest should talk about ‘assessing statistical

models’. In this context ‘modern’ could be interpreted to mean ‘using current tools’ or

‘designed for current classes of models’.

What do we get from having applied a goodness of fit test and having accepted the speci-

fied model?

• a compact description of the data;

• powerful parametric procedures are valid if the data are consistent with the assumed

parametric model;

• light may be shed on the mechanisms generating the data.
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See Rayner and Best (1989, p.4) and Rayner, Thas and Best (2009, Section 1.1). What

if the specified model is rejected? An informative goodness of fit procedure should provide

suggestions as to how the specified model could be altered so that an improved model, i.e.

a parsimonious model that described the data better, can be put forward. Do we find these

characteristics in the old and the current goodness of fit methods?

Some aspects of the articles that are the foundation of goodness of fit are obviously and

necessarily dated, but some are decidedly modern. The notion of a p-value is inherent in

Pearson (1900). The test statistic of Neyman (1937) has components that are asymptotically

independent and standard normal, assessing moment differences between the data and the

hypothesised model. These components can therefore be used for exploratory data analysis

or as tests of fit in their own right. Moreover, the components still turn up in decomposi-

tions of test statistics, not only in ‘old’ statistics like Anderson-Darling, but also in some of

the more recent statistics. This occurs, for example, with statistics based on the empirical

characteristic function (ECF) and the Wasserstein distance. See Gürtler and Henze (2000)

and Meintanis (2004), among others.

In the early days goodness of fit only referred to the one-sample problem, which is con-

cerned with testing that a sample comes from a hypothesised distribution. Nowadays the

assessment of the quality of the fit of any parametric or semiparametric model falls under

its umbrella. Sometimes the term ‘lack-of-fit’ is used instead.

There are several approaches that have emerged over time, but have reached what might

be called maturity during the past two decades. D’Agostino and Stephens (1986) discussed

the following types of tests for the one-sample problem:

• X2 type tests

• tests based on the empirical distribution function

• regression and correlation methods

• transformation methods

Rayner and Best (1989) and Rayner, Thas and Best (2009) focus on smooth tests for the

one-sample problem. The order of the smooth test to apply is an issue, and this has received

considerable attention in the development of the data dependent approach. See, for example,

Ledwina (1994) and Claeskens and Hjort (2004). The use of components and the data-driven

selection of the order has also been studied in the context of the assessment of the quality

of the fit of regression models; see Hart (1997) for an overview. Another issue is whether

or not the components are diagnostic. See Henze and Klar (1996). Other recent work, for

example by Henze and Meintanis (2002), proposes a general approach for constructing tests

of fit based on the empirical Laplace transform.

The Rayner, Thas and Best preference is to first apply what we call an omnibus test (for

example, a smooth test of order two, or four, or perhaps the Anderson-Darling test) and then

scrutinise the data by using components in an EDA manner. Our recent research focuses

on better tools: using generalised score tests, to construct generalised smooth tests to assess

consistency of the data with virtually any model. Enough moments need to be finite so as to

be able to construct the orthonormal polynomials needed to in turn construct interpretable

components that are asymptotically independent and asymptotically standard normal and

whose sums of squares are excellent test statistics in their own right. This approach also fits

into a semiparametric view on goodness of fit testing.
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We, the editors of this special edition, have recently investigated testing for distributions

with current applications: the ZIP, logistic, Laplace and extreme-value. Current and future

interest is on constructing improved models: for example, when components are signifi-

cant to adjust the hypothesized model and ultimately select a model using modern model

selection techniques crafted to our approach. This approach balances on the edge between

hypothesis testing and density estimation.

Thus in our goodness of fit research our aims are thus at least three-fold.

• To build parsimonious valid models (cf compact description).

• To facilitate inference that is based on valid improved models that is more powerful

than the standard parametric and nonparametric options (cf powerful parametric pro-

cedures).

• To achieve improved understanding of the model (cf mechanisms generating the data).

The discipline of goodness of fit is undeniably about building and understanding better

models, or, as Michael Stephens puts it in the interview taken from him and published in this

issue: “A practical statistician knows that the model is only an approximation, and wants

to feel that he or she may safely use the model without dangerous errors; if the sample

is very large and the test rejects, the model might still be good enough for practical use.”

Stephens has suggested the term ‘good-enoughness-of-fit’. The application of goodness of

fit techniques to current questions of significance is what makes them modern and essential.

We believe the contributors to this special edition have reflected this vision and we now

give a brief summary of special issue papers.

• Lockhart, O’Reilly and Stephens revisit tests for the circular von Mises distribution.

However, the focus of the paper is on the approximation of exact conditional p-values.

They find that these p-values come very close to those obtained with the parametric

bootstrap.

• Best, Rayner and Thas compare, predominantly from the perspective of smooth tests,

new and existing tests of fit for the negative binomial distribution.

• A modification of the Greenwood statistic based on higher order spacings is used by

Gulati and Shapiro to test for the logistic distribution.

• Meintanis and Iliopoulos construct a test for the generalized two-sided power distribu-

tion using the empirical moment process.

• In a commonly used nonparametric regression model Dette and Wieczorek give a new

test for the hypothesis of a constant coefficient of variation. This test can also be used

to construct tests for ARCH assumptions in financial time series.

• Isotones are used by Ketterer, Klar and Henze to construct tests of univariate and bi-

variate normality against skew-normal distributions.

• Michael Stephens shows how to approximate the asymptotic power of certain tests

based on the empirical distribution function. This is demonstrated by calculating the

approximate asymptotic power of the Anderson-Darling, Cramér-von Mises and Wat-

son tests when testing for exponentiality against Weibull and gamma alternatives.

• Janic, Ledwina and Kopernika consider data-driven smooth tests for location-scale

families. Their presentation permits quite general estimation schemes, including method

of moments.
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The editors; from left to right: D.J. Best, O. Thas and J.C.W. Rayner.

This picture was taken in the office of John Rayner during Olivier’s

visit in April 2009.

• Rayner, Best and Thas show that the smooth tests of fit are based on sums of squares

of components that are asymptotically independent and standard normal and moreover

that are readily interpretable if and only if method of moments and maximum likeli-

hood estimation coincide - essentially if testing is for a distribution from an exponential

family. If that is not the case then generalized score tests can be used to construct

generalized smooth tests that have convenient components.

• Hart tests the null hypothesis that all of a function’s Fourier coefficients are zero using

a Laplace approximation to the posterior probability of the null hypothesis. One appli-

cation is to lack of fit tests in a regression context. The test statistics are weighted sums

of exponentiated squared Fourier coefficients. This test can be very powerful against

high frequency alternatives.

• Thas, Rayner, Best and De Boeck discuss how to construct a data-driven smooth model

and incidentally reexamines the diagnostic properties of smooth tests of goodness of

fit. While emphasizing the relation between hypothesis testing and density estimation,

they propose a weighted mean integrated squared error (MISE) as an order selection

rule for the data-driven smooth test.

• Carolan and Rayner consider inference on means after a goodness of fit test has been

applied, and the hypothesised model rejected. The ‘usual’ parametric analysis is no

longer valid, but using the model inherent in the smooth model, even more powerful

analysis is possible.

• Finally Michael Stephens is interviewed by Richard Lockhart and John Spinelli.

The editors would like to thank the contributors for submitting their quality articles to this

special edition, and for their patience throughout the reviewing process. We would also like

to thank Editor-in-Chief of the Journal of Statistical Theory and Practice, Dr. Sat Gupta of

the University of North Carolina at Greensboro for commissioning this issue and seeing it

through to completion.
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